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In this paper, the equations of motion for a deploying beam with a tip mass
are derived by using Hamilton’s principle. In the dynamic formulations, the beam
is divided into two parts. One part of the beam is outside the rigid support and
is free to vibrate, while the remaining part is inside the support and is restrained
from vibrating. Four dynamic models: Timoshenko, Euler, simple-flexible and
rigid-body beam theories, are used to describe the axially moving beam. An
external force, parallel to the direction of the axially moving motion, is applied
at the left-hand side of the flexible beam. It is found that the axially moving
motion and flexible vibrations are non-linearly coupled in the system equations.
Finally, the effects of several conditions on the rigid-body motion and the flexible
are discussed.
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1. INTRODUCTION

Dynamic problems of axially moving beams are major concerns for various
applications such as textile industry, tapes, band saws, belts and chains, robot
arms and flexible appendages of a spacecraft. However, these problems have been
traditionally investigated on the basis of the assumption that the member is a rigid
body, but in fact, when the amplitudes of vibration are greater than the allowable
limit, some problems will arise. To obtain a more precise anticipation of the
motions of the axially moving beams, a dynamic analysis of the elastic beams is
necessary.

The dynamic analysis of an axial moving beam has been studied extensively in
the past 20 years. Mote [1] and Tabarrok et al. [2] studied the dynamics of an
axially moving beam. Tsuchiya [3] analyzed the attitudes of a spacecraft with a
rotor during extension of flexible appendages. Kane et al. [4] proposed an
algorithm which can be used to predict the behavior of a beam when its base
undergoes the general three-dimensional motions. Using a recent approach, Yuh
and Young [5] have derived a time-varying partial differential equation and
boundary conditions for an axially moving beam with rotation. By using the finite
element approach, Stylianou and Tabarrok [6, 7] solved an axially moving beam
problem. The elements change in length and are functions of time. Lee [8] exploited
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Figure 1. Schematic of a deploying beam system.

the properties of the eigenfunctions of a uniform fixed-free beam. The equations
of motion in matrix form were formulated for the dynamic responses of an
orthotropic rotating shaft which moved longitudinally over a spring support. In
order to learn the deployment responses of a flexible beam, Creamer [9] presented
a model using the Timoshenko beam theory in conjunction with base oscillatory
motion. Tadikonda and Baruh [10] employed the Eurler beam theory to present
a complete dynamic model for a translating flexible beam which deployed a
payload from a fixed base. Al-Bedoor and Khulief [11] used the Euler beam theory
to show the dynamic model for the vibrations of an elastic beam with prismatic
and revolute joints. The model developed accounts for all the dynamic coupling
terms, as well as the stiffening effect due to beam reference rotation.

In previous studies, most researchers employed the Euler beam theory to study
the flexible vibrations [2, 5, 6, 11, 12, 14, 15] and the dynamic stability [1, 7, 13, 15]
of an axially moving beam. However, the Timoshenko beam model, the tip mass
effect, the external force and its corresponding axial motion were not formulated
completely.

In this paper, the deployment of a flexible beam as shown in Figure 1 is
considered. The flexible beam slides in and out of the rigid wall. At any instant,
a part of the beam is outside the rigid support and is free to vibrate, while the
remaining part of the beam is inside the wall and is restrained from the
deformation in the transverse direction. Hamilton’s principle [16] is employed to
formulate the governing equations of the axial moving beam which is modelled
by four separate beam models. In these formulations, an external force is applied,
and the rigid-body motion and flexible vibrations are found to be non-linearly
coupled.

2. FORMULATION OF THE GOVERNING EQUATIONS

There are four separate models, Timoshenko beam model, Euler beam model,
simple-flexible model and rigid-body model, which can be used to describe an
axially moving beam. Hamilton’s principle is employed to derive the governing
equations of motion for the system shown in Figure 1. The axially moving beam
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is supported by a rigid wall while a mass (M) is attached at its free end. An external
force P is applied at the left-hand side of the beam. In what follows, the governing
equations of the system are derived using Timoshenko beam theory which retains
the effects of the shear deformation and rotary inertia. A reduction process of the
system equations through the other three theories is sequentially presented.

2.1.   

The length of the beam outside the wall is l(t) while the beam length inside the
wall is −s(t). The main point of the dynamic formulation is that the axially
moving beam of the internal x(t)$60+, l(t)7 is free to vibrate while the other
interval x(t)$6−s(t), 0−7 is constrained in the j direction. In Figure 1, a fixed
Cartesian coordinate oxy is used to describe of the problem. It is assumed that
the beam has mass density (r), flexural rigidity (EI) and cross-sectional area (A).

Position vector of any material point (x(t), y) of the axially moving before
deformation is

r= x(t)i+ yj, (1)

where i, j are the unit vectors of the fixed coordinate. It is worth noting that the
beam is deployable and x(t) is a function of time.

The displacement field of the Timoshenko beam is

U=[u(x(t), t)− yc(x(t), t)]i+ v(x(t), t)j, (2)

where u(x(t), t) and v(x(t), t) represent the axial and the transverse displacements
of the beam respectively, and c(x(t), t) is the slope of the deflection curve due to
bending alone. It should be noted that the displacement v(x(t), t) should be zero
for x(t)$6−s(t), 0−7, since the rigid wall is the constraint of the axially moving
beam in the j direction. Thus, (2) represents the displacement for the interval
60+, l(t)7.

The position vector of the point (x(t), y) after deformation is

Rf = r+U. (3)

Taking total derivative of Rf(x(t), y, t) with respect to time, one obtains

DRf(x(t), y, t)
Dt

=[ẋ+ u̇+ ẋux − y(c� + ẋcx )]i+(v̇+ ẋvx )j. (4)

Therefore, the kinetic energies of the beam and the tip mass are, respectively,

K.E.= 1
2rgv

DRf

Dt
·
DRf

Dt
dV=g

0−

−s(t)

T1 dx+g
l(t)

0+

T2 dx, (5)

Tm = 1
2M

DRf

Dt
·
DRf

Dt b(x(t),y)= (l(t),0)

= 1
2M[(ẋ+ u̇+ ẋux )2 + (v̇+ ẋvx )2](x(t),y)= (l(t),0), (6)



.-.   .562

where

T1 = 1
2{rA(ẋ+ u̇+ ẋux )2 + rI(c� + ẋcx )2}, (7)

T2 = 1
2{rA[(ẋ+ u̇+ ẋux )2 + (v̇+ ẋvx )2]+ rI(c� + ẋcx )2}. (8)

The Lagrangian strains in the corresponding directions are

oxx = ux − ycx + 1
2v

2
x , oxy = 1

2(−c+ vx ), oyy =0, (9)

where the higher order terms 1
2(ux − ycx )2 in oxx , uxc and yccx in oxy , and 1

2c
2 in

oyy are neglected. The non-linear term 1
2v

2
x in (9) is due to the large deformation in

the transverse direction. The total strain energy can be written as

S.E.= 1
2 gV

(sxxoxx + sxyoxy + syyoyy ) dV=g
0−

−s(t)

U*1 dx+g
l(t)

0+

U*2 dx, (10)

where

U*1 = 1
2[EAu2

x +EIc2
x + 1

4EAc2], (11)

U*2 = 1
2[EA(ux + 1

2v
2
x )2 +EIc2

x + 1
4EA(vx −c)2], (12)

and E is Young’s modulus of the material.
In addition, the virtual work done by the external force P is defined as

dW=P · dRf=(−s(t),0) =P[d(−s(t))+ du(−s(t), t)]. (13)

Finally, the variation of the kinetic energy (6) of the tip mass is

g
t2

t1

dTm dt=g
t2

t1

M
DRf

Dt
· d

DRf

Dt b(l(t),0)

dt

=$M DRf

Dt
· dRf=(l(t),0)%

t2

t1

−g
t2

t1

M
D2Rf

Dt2 · dRf=(l(t),0) dt. (14)

2.2. ’ 

The total Lagrangian function of the axially moving beam is

Lb (t; ẋ, ux , u̇, vx , v̇, c, cx , c� )=g
l(t)

−s(t)

(T1 +T2 −U*1 −U*2 ) dx

=g
0−

−s(t)

L1 dx+g
l(t)

0+

L2 dx, (15)

where

L1 = 1
2[rA(ẋ+ u̇+ ẋux )2 + rI(c� + ẋcx )2 −EA(u2

x + 1
4c

2)−EIc2
x ], (16)

L2 = 1
2{rA[(ẋ+ u̇+ ẋux )2 + (v̇+ ẋvx )2]+ rI(c� + ẋcx )2

−EA[(ux + 1
2v

2
x )2 + 1

4(vx −c)2]−EIc2
x}. (17)
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Notice that the displacement v(x(t), t) in the j direction is zero for x$6−s(t), 0−7.
Thus, L1 contains only the kinetic and strain energies in the i direction.

Consequently, the general form of Hamilton’s principle for the system is

g
t2

t1
$dg

l(t)

−s(t)

Lb dx+ dW+ dTm% dt

= g
t2

t1
$g

0−

−s(t)

dL1 dx+g
l(t)

0+

dL2 dx+L1b
0−

−s(t)

dx+L2b
l(t)

0+

dx

+ dW+ dTm% dt=0. (18)

where x(t) is also a dependent variable, because the equation of the axially moving
motion will be derived.

By taking variation, applying the partical integration technique, using Leibnitz’s
rule and collecting the like terms, equation (18) can be rewritten as

0=g
t2

t1
6g

0−

−s(t) 0− 1

1t
1L1

1ẋ
dx1 dx+g

l(t)

0+ 0− 1

1t
1L2

1ẋ
dx1 dx

+ $0L1 −
dx
dt

1L1

1ẋ 1dx%
0−

−s(t)

+$0L2 −
dx
dt

1L2

1ẋ 1dx%
l(t)

0+

+Pd(−s(t))

+ g
0−

−s(t) $0− 1

1t
1L1

1u̇
−

1

1x
1L1

1ux 1du+01L1

1c
−

1

1t
1L1

1c�
−

1

1x
1L1

1cx 1dc% dx

+ g
l(t)

0+ $0− 1

1t
1L2

1u̇
−

1

1x
1L2

1ux 1du+0− 1

1t
1L2

1v̇
−

1

1x
1L2

1vx 1dv

+ 01L2

1c
−

1

1t
1L2

1c�
−

1

1x
1L2

1cx 1dc% dx7 dt

+ g
t2

t1
6$01L1

1ux
−

dx
dt

1L1

1u̇ 1du+01L1

dcx
−

dx
dt

1L1

1c� 1dc%
0−

−s(t)

+Pdu(−s(t), t)

+ $01L2

1ux
−

dx
dt

1L2

1u̇ 1du+01L2

1vx
−

dx
dt

1L2

1v̇ 1dv

+ 01L2

1cx
−

dx
dt

1L2

1c� 1dc%
l(t)

0+

−M
D2Rf

Dt2 · dRf=(l(t),0)7 dt



.-.   .564

+ 6g
0−

−s(t)

1L1

1ẋ
dx dx+g

l(t)

0+

1L2

1ẋ
dx dx+g

0−

−s(t) 01L1

1u̇
du+

1L1

1c�
dc1 dx

+ g
l(t)

0+ 01L2

1u̇
du+

1L2

1v̇
dv+

1L2

1c�
dc1 dx+M

DRf

Dt
· dRf=(l(t),0)7

t2

t1

, (19)

where dx, du, dv and dc vanish at times t1 and t2 and dv equals zero at x=0+

and 0−.
Since the axially moving beam is forced at the left-hand side, x(t) is an unknown

variable. Considering the axially moving motion, we have

dx= d(−s(t))= dl(t). (20)

Substituting equation (20) into equation (19), one obtains the axially moving
motion

x: g
0−

−s(t)

1

1t
1L1

1ẋ
dx+g

l(t)

0+

1

1t
1L2

1ẋ
dx−$L1 −

dx
dt

1L1

1ẋ %
0−

−s(t)

−$L2 −
dx
dt

1L2

1ẋ %
l(t)

0+

+M(ẍ+ ü+2ẋu̇x + ẍux + ẋ2uxx )=(l(t),0) =P. (21)

Subsequently, the governing equations of the flexible beam are

− s(t)Q xQ 0−

u: −
1

1t
1L1

1u̇
−

1

1x
1L1

1ux
=0, (22)

c:
1L1

1c
−

1

1t
1L1

1c�
−

1

1x
1L1

1cx
=0. (23)

0+ Q xQ l(t)

u: −
1

1t
1L2

1u̇
−

1

1x
1L2

1ux
=0, (24)

v: −
1

1t
1L2

1v̇
−

1

1x
1L2

1vx
=0, (25)

c:
1L2

1c
−

1

1t
1L2

1c�
−

1

1x
1L2

1cx
=0. (26)

The associated boundary conditions are

x=−s(t)

−01L1

1ux
−

dx
dt

1L1

1u̇ 1x=−s(t)

+P=0, (27a)
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−01L1

1cx
−

dx
dt

1L1

1c� 1x=−s(t)

= 0. (27b)

x=0

$1L1

1ux
−

dx
dt

1L1

1u̇ %0−

−$1L2

1ux
−

dx
dt

1L2

1u̇ %0+

=0, (28a)

$1L1

1cx
−

dx
dt

1L1

1c� %0−

−$1L2

1cx
−

dx
dt

1L2

1c� %0+

=0. (28b)

x= l(t)

$1L2

1ux
−

dx
dt

1L2

1u̇ %x= l(t)

−M
D2Rf

Dt2 b(l(t),0,t)

= 0, (29a)

$1L2

1vx
−

dx
dt

1L2

1v̇ %x= l(t)

−M
D2Rf

Dt2 b(l(t),0,t)

= 0, (29b)

01L2

1cx
−

dx
dt

1L2

1c� 1x= l(t)

= 0. (29c)

Substituting the Lagrangian densities (16) and (17) into equations (21)–(29c), the
governing equations become

x: g
0−

−s(t)

{rA[(ẍ+ ü+ ẍux + ẋu̇x )(1+ ux )+ u̇x (ẋ+ u̇+ ẋux )]

+ rI(c� cx + ẍc2
x +2ẋc� xcx +c� c� x )} dx

+g
l(t)

0+

{rA[(ẍ+ ü+ ẍux + ẋu̇x )(1+ ux )+ u̇x (ẋ+ u̇+ ẋux )

+ (v̈vx + ẍv2
x +2ẋv̇xvx + v̇v̇x )7+ rI(c� cx + ẍc2

x +2ẋc� xcx +c� c� x )} dx

+M(ẍ+ ü+2ẋu̇x + ẍux + ẋ2uxx )=(l(t),0,t)

+ 1
2{rA(2ẋ2ux + ẋ2u2

x + ẋ2v2
x − u̇2 − v̇2)− rIc� 2

+EA[(u2
x + 1

2v
2
x )2 + 1

4(vx −c)2]}x= l(t) − 1
2[rAẋ2u2

x + 1
4EA(v2

x −2vxc)]x=0+

+ [12rAẋ2u2
x ]x=0− − 1

2{rA(2ẋ2ux + ẋ2u2
x − u̇2)− rIc� 2

+EA(u2
x + 1

4c
2)}x=−s(t) =P. (30)

− s(t)Q xQ 0−:

u: − rA(ẍ+ ü+ ẍux +2ẋu̇x + ẋ2uxx )+EAuxx =0, (31)
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c: − rI(c� + ẍcx +2ẋc� x + ẋ2cxx )− 1
4EAc+EIcxx =0. (32)

0+ Q xQ l(t):

u: − rA(ẍ+ ü+ ẍux +2ẋu̇x + ẋ2uxx )+EA(uxx + vxvxx )=0, (33)

v: − rA(v̈+ ẍvx +2ẋv̇x + ẋ2vxx )+EA(uxxvx + uxvxx + 3
2v

2
xvxx)

+ 1
4EA(vxx −cx )=0, (34)

c: − rI(c� + ẍcx +2ẋc� x + ẋ2cxx )+ 1
4EA(vx −c)+EIcxx =0. (35)

The boundary conditions become

x=−s(t):

ux (−s(t), t)=−
P

EA
, cx (−s(t), t)=0. (36a, b)

x=0:

u(0−, t)= u(0+, t), v(0+, t)=0, c(0−, t)=c(0+, t),

ux (0−, t)= ux (0+, t)+ 1
2v

2
x (0+, t), cx (0−, t)=cx (0+, t). (37a, b, c, d, e)

x= l(t):

0=M(ẍ+ ü+2ẋu̇x + ẍux + ẋ2uxx )=(l(t),0,t) + [EA(ux + 1
2v

2
x )]x= l(t), (38a)

0= [−EA(ux + 1
2v

2
x )vx − 1

4EA(vx −c)]x= l(t)

−M(v̈+2ẋv̇x + ẍvx + ẋ2vxx )=(l(t),0,t), (38b)

cx (l(t), t)=0. (38c)

The non-linear partial differential equation (30)–(35) are the second-order
derivatives of the variables x, u, v and c with respect to time. Equation (30)
characterizes the axially moving motion of the beam while equations (31)–(35)
describe the flexible vibrations of the deploying beam modeled by the Timoshenko
beam theory. It is noticed that the axially moving motion and the flexible
vibrations are non-linearly coupled. The terms 2ẋu̇x , 2ẋv̇x and 2ẋc� x are the Coriolis
forces in the u, v and c equations respectively.

2.3.   

If the Euler beam theory is used to describe the bending deformation of the
axially moving beam by setting c= vx and neglecting the shear deformation and
the rotating inertia effect of rI term [17]. For the beam interval inside the wall,
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we have v(x, t)=0, x$6−s(t), 0−7. Thus, the c term of the beam also vanishes.
The governing equations of the system are

x: rA g
0−

s(t)

[(ẍ+ ü+ ẍux + ẋu̇x )(1+ ux )+ u̇x (ẋ+ u̇+ ẋux )] dx

+ rA g
l(t)

0+

[(ẍ+ ü+ ẍux + ẋu̇x )(1+ ux )+ u̇x (ẋ+ u̇+ ẋux )

+ (v̈vx + ẍv2
x +2ẋv̇xvx + v̇v̇x )] dx

+M(ẍ+ ü+2ẋu̇x + ẍux + ẋ2uxx )=(l(t),0,t)

+ 1
2[rA(2ẋ2ux + ẋ2u2

x + ẋ2v2
x − u̇2 − v̇2)+EA(ux + 1

2v
2
x)2]x= l(t)

− 1
2[EIv2

xx ]x=0+ − 1
2[rA(2ẋ2ux + ẋ2u2

x − u̇2)+EAu2
x ]x=−s(t) =P. (39)

− s(t)Q xQ 0−:

u: − rA(ẍ+ ü+ ẍux +2ẋu̇x + ẋ2uxx )+EAuxx =0. (40)

0+ Q xQ l(t):

u: − rA(ẍ+ ü+ ẍux +2ẋu̇x + ẋ2uxx )+EA(uxx + vxvxx )=0, (41)

v: − rA(v̈+ ẍvx +2ẋv̇x + ẋ2vxx )+EA(uxxvx + uxvxx + 3
2v

2
xvxx )−EIvxxxx =0.

(42)

The boundary conditions are

x=−s(t):

ux (−s(t), t)=−
P

EA
. (43)

x=0:

u(0−, t)= u(0+, t), ux (0−, t)= ux (0+, t), v(0+, t)= vx (0+, t)=0.
(44a, b, c, d)

x= l(t):

[EA(ux + 1
2v

2
x )]x= l(t) +M(ẍ+ ü+2ẋu̇x + ẍux + ẋ2uxx )=(l(t),0,t) = 0, (45a)

[EA(ux + 1
2v

2
x )vx −EIvxxx ]x= l(t) +M(v̈+2ẋv̇x + ẍvx )=(l(t),0,t) = 0, (45b)

vxx (l(t), t)=0. (45c)

It is seen from the equations of motion (39)–(42) and the boundary conditions
(43)–(45c) that the rigid-body motion and the flexural vibrations are non-linearly
coupled.

Preveious studies of an axially moving beam have only focused attention on the
transverse vibrations of the linear systems [1, 11, 12, 15]. As the rigid-body motion,
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axial deflection and nonlinear terms are neglected, the dynamic equations can be
reduced to the same formulation.

2.4. - 

In the simple-flexible model, one will eliminate the axial displacement u(x, t) but
retain the axially moving inertia effect. Equations (40), (41), (43) and (45a) contain
the external force P, the tip mass M and the internal force of the beam. The
reduction process is to carry these effects in the u equations into the v governing
equation (42) and its boundary condition (46). Thus, one may define the internal
axial forces as

p1(x, t)=EAux , − s(t)E xE 0− (46)

p2(x, t)=EA(ux + 1
2v

2
x ), 0+ E xE l(t). (47)

The relationships of the external force at the left-hand side and the inertia force
of the tip mass at the right-hand side are respectively,

p1(−s(t), t)=EAux (−s(t), t)=−P, (48)

p2(l(t), t)=−Mẍ. (49)

Sequentially, equations (40)–(42) can be rewritten as

p1,x (x, t)= rAẍ, − s(t)Q xQ 0− (50)

p2,x (x, t)= rAẍ, 0+ Q xQ l(t) (51)

[p2vx ]x − rA(v̈+ ẍvx +2ẋv̇x + ẋ2vxx )−EIvxxxx =0, 0+ Q xQ l(t). (52)

As a result, we have

p1(x, t)= p1(−s(t), t)+g
x

−s(t)

1

1x
p1(x, t) dx=−P+ rAẍ(x+ s(t)), (53)

p2(x, t)= p2(l(t), t)−g
l(t)

x

1

1x
p2(x, t) dx=−Mẍ− rAẍ(l(t)− x). (54)

From the physical property of the continuous axial force at x=0, we have

p1(0−, t)= p2(0+, t), (55)

and from equations (53) and (54), we obtain

rA(l(t)+ s(t))ẍ+Mẍ=P. (56)
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Sybstituting equations (50)–(54) and (56), into equations (39) and (42), the
governing equations are simplified as

x: rA g
0−

−s(t)

ẍ dx+ rA g
l(t)

0+

[ẍ+(v̈vx + ẍv2
x +2ẋv̇xvx + v̇v̇x )] dx+Mẍ

+ 1
2[rA(ẋ2v2

x − v̇2)− 1
2Mẍv2

x ]x= l(t) − 1
2[EIv2

xx ]x=0+ =P, (57)

v: rA(v̈+2ẋv̇x + ẋ2vxx )+ [M+ rA(l(t)− x)]ẍvxx +EIvxxxx =0. (58)

The boundary conditions are

x=0:

v(0, t)= vx (0, t)=0. (59a, b)

x= l(t):

{M[v̈+2ẋv̇x ]−EIvxxx}x= l(t) = 0, (60a)

vxx (l(t), t)=0. (60b)

2.5. - 

The governing equation of a rigid-body motion of the axially moving beam can
be obtained by neglecting all the flexibility terms. Thus, we have

rA(l(t)+ s(t))ẍ+Mẍ=P. (61)

3. DISCUSSION

The objective of this paper is to derive the equations of the axially moving beam
system by use of various beam theories. The reduction process was shown by
starting with the Timoshenko beam theory and going through the Euler beam
theory, simple-flexible beam theory and, finally, the rigid-body beam.

Now, several important observations can be made:

(i) In the Timoshenko and Euler beam models, the external force P occurs in
the nonhomogeneous term of the x governing equation (30, 39) and in the
u boundary condition (36a, 43) at x=−s(t), but P exists in the x governing
equation (57) only for the simple-flexure and rigid-body models.

(ii) In the simple-flexible model, the v governing equation becomes linear.
Boundary condition (60a) states the shear force balance and is complicated.
The finite element method was employed by Stylianou and Tabarrok [7, 8]
to investigate the dynamic response and stability of the axially moving
beam with tip mass. However, many investigators [9–11, 15] employed the
assumed modes method to solve the simple-flexible beam problem.

(iii) The axially moving motion and flexible vibration are non-linearly coupled
in all the Timoshenko, Euler and simple-flexible beam models. Even though
the external force is absent, the are also coupled. Thus, a complete analysis
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of the axially moving beam should include both the axially moving motion
and the flexible vibration.

(iv) The external force P could be practically implemented by a hydraulic or
motor driven system. In order to control the axially moving beam motion
or suppress the system vibration, the effect of the external force needs to be
understood in detail.

(v) Because of the coupling effect, the Coriolis forces exist in the governing
equations. This phenomenon is also seen in a rotating disk [18] and traveling
string [19].

4. CONCLUSIONS

In this paper, the axially moving motion, flexible vibration and boundary
conditions for an axially moving beam with a tip mass are derived completely. The
formulation is based on the expression of the kinetic and strain energies of the
system by Hamilton’s principle. In our formulation, the rigid wall prevents the
vertical deflections but does not restrain the horizontal displacement. The velocity
and acceleration of the deployment motion of the beam are also included in the
formulae. It is found that the rigid-body motion and flexible vibration are
non-linearly coupled. The Coriolis forces exist in this system.

The transient amplitude, steady-state response and dynamic stability analysis of
the axially moving beam would be the interesting problems for further
investigation.
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